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ABSTRACT

The effect of temperature on the concentration of the major reactive species as a

function of H2O2 addition in the enzymatic polymerization of 4-propylphenol was

investigated using in situ 1H-NMR spectroscopy. We have studied the trend of

monomer depletion and the formation of predominant dimers with an incremental

addition of H2O2 at different temperatures. The trends for depletion of monomer are

very similar while the trends for the dimers display dramatic differences at the

investigated temperatures. The dynamic equilibrium stage of dimers was observed

only in the case of low reaction temperature. The comparison of the in situ spectra

recorded at different reaction temperatures suggests that less undesired side reactions

occurred at low temperature.
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INTRODUCTION

Over the past few decades, enzymatic polymerization has attracted the attention of

researchers due to its one-step reaction procedure and environmental compatibility.

Horseradish peroxidase (HRP) catalyzed synthesis of polyphenols has been especially

investigated extensively because of wide potential applications in the areas of photo-

nics,[1–3] bio-sensors,[4] and phenolic resins and coatings.[5] Typically this reaction is

carried out in an aqueous-organic or aqueous solution at room temperature, with H2O2 as

an oxidant.[6] The polymerization reaction involves continuous initiation and coupling

steps during which the two kinds of radicals, the initially produced phenoxy radicals

and the subsequently formed phenyl radicals, co-exist and propagate simultaneously.

Therefore, normally the prepared poly(phenol)s contain mixed repeating units of pheny-

lene and oxyphenylene.[7] To prepare polymers with well-defined structure, many

strategies have been developed such as the polymerization of monomer with unique

propagation center,[8,9] the manipulation of solvent system to enhance the propagation of

one kind of radicals.[10] However, to date the effect of temperature on such processes has

not been investigated.

It is well known that temperature plays an important role in various free

radical reactions. The reactivities of the free radicals are sensitive to temperature;

consequently, it is expected that temperature can be utilized to minimize undesired

products and tailor the propagation of the radicals towards formation of desired

polymers.

High resolution NMR is a powerful analytical tool in investigating the mechanism

of reactions by monitoring the state of the intermediates and analyzing the products. Our

previous work using an in situ 1H-NMR technique has demonstrated its importance in

studying the coupling mechanism of the enzymatic polymerization during the very early

stages of the reaction for different phenolic monomers.[11]

In this paper, we apply in situ 1H-NMR, combined with a variable temperature (VT)

technique to investigate the effect of temperature on the enzymatic polymerization of

4-propylphenol. We focus mainly on (a) monitoring the consumption of monomer and

the formation of major dimers as a function of H2O2 addition at the very early stage of

reaction; and (b) evaluating the relative amount of side reactions at different reaction

temperatures.

EXPERIMENTAL

Materials

Horseradish peroxidase (250 units=mg) was purchased from Sigma Chemical Co., St.

Louis, MO. A stock solution of 10 mg=mL HRP at pH 7.0, in 0.1 M phosphate buffer

solution was prepared in D2O. H2O2 (50% water solution), 4-propylphenol, and pyrazine

(used as reference standard for quantitative analysis) were obtained from Aldrich Chemical

Co., Inc., Milwaukee, WI. To avoid the inhibition of HRP due to an excess of H2O2, dilute

H2O2 (5% in D2O) was used. All deuterated solvents were purchased from Cambridge

Isotope Laboratories, Inc. and were used as received.
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In Situ 1H-NMR Measurements

In situ 1H-NMR spectra were recorded on a Bruker DRX-500 MHz NMR spectrometer

with a 5 mm broadband probe equipped with variable temperature accessories. The in situ

polymerization was carried out in the 5 mm NMR tube. To a NMR tube, 0.20 mL of

7.5 mg=mL of monomer solution in acetone-d6, 0.05 mL of HRP in phosphate buffer and

0.15 mL of 2.0 mg=mL pyrazine solution in D2O were added. The solution was shaken for

5 min and equilibrated at the desired temperature for half an hour prior to 1H-NMR

measurement. Each 1H-NMR spectrum was soon recorded (approximately 1 min) after the

addition of 3.0 mL of H2O2 to the NMR tube. Incremental addition of H2O2 was carried out

at every 5 min, and a total of 15.0 mL of H2O2 was added. Typical optimized parameters for

acquiring 1H-NMR spectrum with reasonable signal-to-noise ratio are: a 10 kHz spectral

width, a 13.1 ms (90� pulse) pulse width, a 32 K time domain data points, a 1.6 s acquisition

time, a 1.0 s relaxation delay, 16 transients and with water suppression by a presaturation

technique. The free induction decay (FID) data were processed with 0.3 Hz line broadening

prior to Fourier transformation. The spectrum was internally referenced by assigning the

chemical shift of ��CH in pyrazine at 8.70 ppm with respect to tetramethylsilane (TMS).

RESULTS AND DISCUSSION

The possible coupling reactions for 4-propylphenol that may occur at the early stage

of the polymerization are illustrated in Sch. 1. These include C��O��C coupled products

Scheme 1. Possible coupling products for 4-propylphenol at early stage.
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1 and 2, the ortho–ortho C��C coupled product 3, ortho–para coupled product 4, and the

Pummerer’s type ketone 5 via intramolecular Michael addition from dimer 4.

Figures 1 and 2 are stacked plots of selected in situ 1H-NMR spectral data of

enzymatic polymerization of 4-propylphenol in the aromatic and aliphatic regions,

respectively. The spectra were recorded at 293 K with an incremental addition of H2O2.

The labeling of each proton is presented in Sch. 1. Before the addition of H2O2, the

resonance signals are from monomer and pyrazine. Since pyrazine is a symmetrical

molecule, only one singlet at 8.7 ppm is observed. Two doublets at 6.7 and 6.9 ppm in

Fig. 1 are assigned to protons 2 and 3 in 4-propylphenol. The alkyl protons 4, 5, and 6 in

4-propylphenol appear at 2.4, 1.5, and 0.8 ppm, respectively as shown in Fig. 2. After the

addition of 3.0 mL of H2O2, new peaks appear immediately in the region of 7.6–6.0 ppm

suggesting the onset of polymerization. With the addition of H2O2, the intensity of

monomer peak decreases and new peaks emerge due to the formation of various

oligomeric species. After 12.0 mL of H2O2, the new peaks become distributed widely

indicating the formation of various dimers and other oligomers. The complex nature of the

spectral pattern as a result of overlapping of resonances arising from several reaction

products with varying concentrations, has necessitated the use of 2D correlation experi-

ments like COSY (COrrelated SpectroscopY), TOCSY (TOtal Correlation SpectroscopY)

(spectrum not shown) and model compounds with NMR spectral simulation software for

the proper assignments of the predominant resonances. With this approach, the peaks at

7.62, 6.35, and 7.08 ppm are assigned to the protons a, b, and c in the ortho-para C��C

coupled dimer 4. The overlapped peak at 7.08 ppm and the doublets at 7.01 and 7.12 ppm

are due to the protons c, d, and e in the ortho-ortho C��C coupled dimer 3. The change in

the local chemical environment of the aliphatic side group is also reflected in the formation

Figure 1. Selected in situ 1H-NMR spectral data of enzymatic polymerization of 4-propylphenol

(aromatic region) at 293 K.
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of new peaks as well. To investigate the temperature effect on the reactive species, similar

measurements were also performed at temperatures 273, 283, and 288 K.

Pyrazine is chemically inert and does not interfere in this reaction. It is used as an

internal standard in this experiment for quantitative analysis by assigning its resonance

area to be unity. The concentration of each reactive species could be obtained by

normalizing their integrated area relative to that of pyrazine. In the present work, the

monomer resonance at 6.90 ppm and the peak for the predominant dimers at 7.08 ppm are

selected as the representative resonances. Figures 3 and 4 show the concentration of

monomer and dimer formed as a result of enzymatic polymerization as a function of H2O2

addition at various temperatures ranging from 273 to 293 K.

Figure 3 shows clearly that the decrease in the concentration of monomer follows the

same trend at all tested temperatures. The relative monomer concentration initially reduced

at a faster rate before the addition of 9.0 mL of H2O2. Subsequently, the rate of decrease of

monomer concentration slowed down. Such behavior agrees well with our previous

observation on p-cresol[12] and p-sulfonated phenol.[13]

Until now, two kinds of trends for the formation of dimers have been observed during

the enzymatic polymerization of phenols.[11] In the case of p-sulfonated phenol at ambient

temperature, the growth profile for dimers as a function of H2O2 can be divided into three

stages.[13] Stage 1 consists of the proliferation of the dimers where the concentration of

dimers increases rapidly. In stage 2, a dynamic equilibrium between the dimers formation

and their consumption is attained. This results in the dimers concentration remaining

almost constant even though the monomer is being consumed continuously during this

stage. In the last stage of the dimers profile, the concentration of dimers decreases

gradually due to their participation in the polymerization. On the other hand, in the case of

polymerization of p-cresol at ambient temperature, however, no stage 2, i.e., a dynamic

equilibrium for dimer, was observed.[12]

Figure 2. Selected in situ 1H-NMR spectral data of enzymatic polymerization of 4-propylphenol

(aliphatic region) at 293 K.
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More interestingly, in the present work, two distinct profiles for the dimer concentra-

tion were observed by simply varying the reaction temperature. In Fig. 4, all three stages

(shown in Fig. 4) are observed for dimers at temperature 273 and 283 K. However, the

profile of these stages changed significantly as the reaction temperature was increased.

At reaction temperatures 288 and 293 K, only the stages for proliferation and reduction

of dimers were observed (Stages 2 and 3 in Fig. 4). These results suggest that the

formation and consumption of dimers can be manipulated simply by altering the reaction

temperature.

There are some additional weak resonances (2.5–3.0, 1.8–2.25 ppm, 0.9–1.25 ppm)

observed in the aliphatic region of the spectrum (Fig. 5). These are believed to be from the

Figure 3. Integrated area of monomer as a function of H2O2 at tested temperatures.

Figure 4. Integrated area of dimers as a function of H2O2 at tested temperatures.
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side reactions. The assignments of these peaks are still under investigation. However,

recently we were able to isolate one of the major side products by thin layer chromato-

graphic (TLC) technique.[14] The detailed structural analysis of this major side product by

one- and two-dimensional NMR techniques suggests that it is a Pummerer’s type ketone

(Structure 5 in Sch. 1), which is formed through an intramolecular Michael addition as

shown in Sch. 1.[14] The relative intensities of these peaks change as a function of

temperature (Fig. 5). For example, these weak resonances have become pronounced at an

elevated temperature (298 K). These data suggest that side reactions are minimized at low

reaction temperatures.

CONCLUSION

For the first time, the effect of temperature on the enzymatic polymerization of

4-propylphenol has been investigated using an in situ 1H-NMR technique. The in situ
1H-NMR experiments indicate that the trend for monomer concentration as a function of

H2O2 addition is identical at all investigated temperatures, whereas the trends for dimers

as a function of H2O2 addition is strongly temperature dependent. The difference between

concentration profiles of the dimers as a function of H2O2 addition at high reaction

temperature compared to a lower temperature is the disappearance of dynamic equilibrium

stage in the former. Our data established that the formation of side products is sensitive to

the reaction temperature.
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